参考页面:http://www.uinio.com/Math/LaTex
写技术文档少不了公式。这需要用到一些 \(LATEX\) 语法。
下面列举一些常用字符的写法。
希腊字母
1 |
\(\alpha\) |
\alpha |
|
|
2 |
\(\beta\) |
\beta |
|
|
3 |
\(\gamma\) |
\gamma |
\(\Gamma\) |
\Gamma |
4 |
\(\delta\) |
\delta |
\(\Delta\) |
\Delta |
5 |
\(\epsilon\) |
\epsilon |
|
|
6 |
\(\zeta\) |
\zeta |
|
|
7 |
\(\eta\) |
\eta |
|
|
8 |
\(\theta\) |
\theta |
\(\Theta\) |
\Theta |
9 |
\(\iota\) |
\iota |
|
|
10 |
\(\kappa\) |
\kappa |
|
|
11 |
\(\lambda\) |
\lambda |
\(\Lambda\) |
\Lambda |
12 |
\(\mu\) |
\mu |
|
|
13 |
\(\nu\) |
\nu |
|
|
14 |
\(\xi\) |
\xi |
\(\Xi\) |
\Xi |
15 |
\(o\) |
o |
\(O\) |
O |
16 |
\(\pi\) |
\pi |
\(\Pi\) |
\Pi |
17 |
\(\rho\) |
\rho |
|
|
18 |
\(\sigma\) |
\sigma |
\(\Sigma\) |
\Sigma |
19 |
\(\tau\) |
\tau |
|
|
20 |
\(\upsilon\) |
\upsilon |
\(\Upsilon\) |
\Upsilon |
21 |
\(\phi\) |
\phi |
\(\Phi\) |
\Phi |
22 |
\(\chi\) |
\chi |
|
|
23 |
\(\psi\) |
\psi |
\(\Psi\) |
\Psi |
24 |
\(\omega\) |
\omega |
\(\Omega\) |
\Omega |
25 |
\(\digamma\) |
\digamma |
|
|
二元运算符
1 |
\(+\) |
+ |
2 |
\(-\) |
- |
3 |
\(\times\) |
\times |
4 |
\(\div\) |
\div |
5 |
\(\pm\) |
\pm |
6 |
\(\mp\) |
\mp |
7 |
\(\triangleleft\) |
\triangleleft |
8 |
\(\triangleright\) |
\triangleright |
9 |
\(\cdot\) |
\cdot |
10 |
\(\setminus\) |
\setminus |
11 |
\(\star\) |
\star |
12 |
\(\ast\) |
\ast |
13 |
\(\cup\) |
\cup |
14 |
\(\cap\) |
\cap |
15 |
\(\sqcup\) |
\sqcup |
16 |
\(\sqcap\) |
\sqcap |
17 |
\(\vee\) |
\vee |
18 |
\(\wedge\) |
\wedge |
19 |
\(\circ\) |
\circ |
二元关系符
1 |
\(=\) |
= |
2 |
\(\ne\) |
\ne |
3 |
\(\neq\) |
\neq |
4 |
\(\equiv\) |
\equiv |
5 |
\(\not\equiv\) |
\not\equiv |
6 |
\(\doteq\) |
\doteq |
7 |
\(\doteqdot\) |
\doteqdot |
逻辑符号
1 |
\(\forall\) |
\forall |
2 |
\(\exists\) |
\exists |
3 |
\(\nexists\) |
\nexists |
4 |
\(\therefore\) |
\therefore |
5 |
\(\because\) |
\because |
6 |
\(\And\) |
\And |
7 |
\(\lor\) |
\lor |
8 |
\(\vee\) |
\vee |
集合符号
1 |
\(\{ \}\) |
\{ \} |
2 |
\(\emptyset\) |
\emptyset |
3 |
\(\varnothing\) |
\varnothing |
4 |
\(\in\) |
\in |
5 |
\(\notin\) |
\notin |
6 |
\(\ni\) |
\ni |
7 |
\(\cap\) |
\cap |
8 |
\(\Cap\) |
\Cap |
9 |
\(\sqcap\) |
\sqcap |
10 |
\(\bigcap\) |
\bigcap |
11 |
\(\cup\) |
\cup |
12 |
\(\Cup\) |
\Cup |
13 |
\(\sqcup\) |
\sqcup |
14 |
\(\bigcup\) |
\bigcup |
15 |
\(\bigsqcup\) |
\bigsqcup |
分数
分数 |
\(\frac{2}{4}x=0.5x\) |
\frac{2}{4}x=0.5x |
分数 |
\({2 \over 4}x=0.5x\) |
{2 \over 4}x=0.5x |
数值函数
\(\exp_a b = a^b, \exp b = e^b, 10^m\) |
\exp_a b = a^b, \exp b = e^b, 10^m |
\(\ln c, \lg d = \log e, \log_{10} f\) |
\ln c, \lg d = \log e, \log_{10} f |
\(\sin a, \cos b, \tan c, \cot d, \sec e, \csc f\) |
\sin a, \cos b, \tan c, \cot d, \sec e, \csc f |
\(\min(x,y), \max(x,y)\) |
\min(x,y), \max(x,y) |
根号
\(\surd\) |
\surd |
\(\sqrt{\pi}\) |
\sqrt{\pi} |
\(\sqrt[n]{\pi}\) |
\sqrt[n]{\pi} |
\(\sqrt[3]{\frac{x^3+y^3}{2}}*\) |
\sqrt[3]{\frac{x^3+y^3}{2}}* |
微分与导数
\(dt, \mathrm{d}t, \partial t, \nabla\psi\) |
dt, \mathrm{d}t, \partial t, \nabla\psi |
\(dy/dx, \mathrm{d}y/\mathrm{d}x\) |
dy/dx, \mathrm{d}y/\mathrm{d}x |
\(\frac{dy}{dx}, \frac{\mathrm{d}y}{\mathrm{d}x}\) |
\frac{dy}{dx}, \frac{\mathrm{d}y}{\mathrm{d}x} |
\(\prime, \backprime, f^\prime, f', f''\) |
\prime, \backprime, f^\prime, f', f'' |
极限
\(\lim_{n \to \infty}x_n\) |
\lim_{n \to \infty}x_n |
大型运算符
求和 |
\(\sum_{a}^{b}\) |
\sum_{a}^{b} |
连乘积 |
\(\prod_{a}^{b}\) |
\prod_{a}^{b} |
余积 |
\(\coprod_{a}^{b}\) |
\coprod_{a}^{b} |
并集 |
\(\bigcup_{a}^{b}\) |
\bigcup_{a}^{b} |
交集 |
\(\bigcap_{a}^{b}\) |
\bigcap_{a}^{b} |
析取 |
\(\bigvee_{a}^{b}\) |
\bigvee_{a}^{b} |
合取 |
\(\bigwedge_{a}^{b}\) |
\bigwedge_{a}^{b} |
上下标
上标 |
\(a^2\) \(a^{x+3}\) |
a^2 a^{x+3} |
下标 |
\(a_2\) |
a_2 |
组合 |
\(10^{30} a^{2+2}\) \(a{i,j} b{f'}\) |
10^{30} a^{2+2} a{i,j} b{f'} |
上下标混合 |
\(x_2^3\) \({x_2}^3\) |
x_2^3 {x_2}^3 |
上标的上标 |
\(10^{10^{8}}\) |
10^{10^{8}} |
二项式系数
二项式系数 |
\(\binom{n}{k}\) |
\binom{n}{k} |
小型二项式系数 |
\(\tbinom{n}{k}\) |
\tbinom{n}{k} |
大型二项式系数 |
\(\dbinom{n}{k}\) |
\dbinom{n}{k} |
矩阵
\[
\begin{matrix}
x & y \\
z & v
\end{matrix}
\]
\begin{matrix}
x & y \\
z & v
\end{matrix}
\[
\begin{vmatrix}
x & y \\
z & v
\end{vmatrix}
\]
\begin{vmatrix}
x & y \\
z & v
\end{vmatrix}
数组
\[
\begin{array}{ | c | c | c | }
a & b & S \\
\hline
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}
\]
\begin{array}{ | c | c | c | }
a & b & S \\
\hline
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}
方程组
\[
\begin{cases}
3x + 5y + z \\
7x - 2y + 4z \\
-6x + 3y + 2z
\end{cases}
\]
\begin{cases}
3x + 5y + z \\
7x - 2y + 4z \\
-6x + 3y + 2z
\end{cases}
多行等式
MathJax 3.0 取消了单行公式环境下 \\
的强制换行功能,因此强制换行命令 \\
仅能用于 eqnarray
、align
、array
、matrix
等多行环境当中。
\[
\begin{array}{rl}
f(x) & = (a+b)^2 \\
& = a^2+2ab+b^2
\end{array}
\]
\begin{array}{rl}
f(x) & = (a+b)^2 \\
& = a^2+2ab+b^2
\end{array}
对齐
使用对齐符号 &
和 array
可以将多个元素按照指定规则 lcl
对齐。
\[
\begin{array}{lcl}
z & = & a \\
f(x,y,z) & = & x + y + z
\end{array}
\]
\begin{array}{lcl}
z & = & a \\
f(x,y,z) & = & x + y + z
\end{array}
改变对齐规则后:
\[
\begin{array}{rcl}
z & = & a \\
f(x,y,z) & = & x + y + z
\end{array}
\]
\begin{array}{rcl}
z & = & a \\
f(x,y,z) & = & x + y + z
\end{array}
括号
常用的 ()
、[]
、{}
括号符号可以在 LaTeX 环境当中直接进行使用,但是如果处于较大的符号当中,就应该配合 \left
与 \right
命令来使用:
圆括号、小括号 |
\(\left ( \frac{a}{b} \right )\) |
\left ( \frac{a}{b} \right ) |
圆括号、小括号 |
\(( \frac{a}{b} )\) |
( \frac{a}{b} ) |
空格
双空格 |
\(a \qquad b\) |
a \qquad b |
单空格 |
\(a \quad b\) |
a \quad b |
字符空格 |
\(a\ b\) |
a\ b |
文本模式中的字符空格 |
\(a \text{ } b\) |
a \text{ } b |
大空格 |
\(a\;b\) |
a\;b |
小空格 |
\(a\,b\) |
a\,b |